Aufgabenbeispiele von Erwartungswert

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Zufallsgröße (ohne Wahrscheinlichkeit)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(
Ein Würfel mit nebenstehendem Netz wird 2 mal geworfen. Die Zufallsgröße X beschreibt die Differenz: Augenzahl beim ersten Wurf - Augenzahl beim zweiten Wurf. Gib alle Werte an, die die Zufallsgröße X annehmen kann.

Lösung einblenden

Für die Zufallsgröße X: 'Differenz Würfel1 - Würfel2' sind folgende Werte möglich:

Zufallsgröße X-2-1012
zugehörige
Ereignisse
1 - 31 - 2
2 - 3
1 - 1
2 - 2
3 - 3
2 - 1
3 - 2
3 - 1

Zufallsgröße WS-Verteilung

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(
Ein Würfel mit nebenstehendem Netz wird 2 mal geworfen. Die Zufallsgröße X beschreibt die Differenz: Augenzahl beim ersten Wurf - Augenzahl beim zweiten Wurf (es sind also auch negative Werte für diese Differenz möglich). Stelle eine Wahrscheinlichkeitsverteilung für die Zufallsgröße X auf.

Lösung einblenden

Für die Zufallsgröße X: 'Differenz Würfel1 - Würfel2' sind folgende Werte möglich:

Zufallsgröße XX = -3X = -2X = -1X = 0X = 1X = 2X = 3
zugehörige
Ergebnisse
2 - 53 - 52 - 32 - 2
3 - 3
5 - 5
3 - 25 - 35 - 2
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(


Jetzt müssen die Wahrscheinlichkeiten der einzelnen Ereignisse erst mal (mit Hilfe eines Baums) berechnet werden.


Und somit können wir dann auch die Wahrscheinlichkeiten für die einzelnen Werte der Zufallsgröße berechnen.

Zufallsgröße XX = -3X = -2X = -1X = 0X = 1X = 2X = 3
zugehörige
Wahrscheinlichkeit P(X)
1 2 1 3 1 6 1 3 1 2 1 6 1 2 1 2
+ 1 6 1 6
+ 1 3 1 3
1 6 1 2 1 3 1 6 1 3 1 2
  = 1 6 1 18 1 12 1 4 + 1 36 + 1 9 1 12 1 18 1 6



Hiermit ergibt sich die gesuchte Wahrscheinlichkeitsverteilung für die Zufallsgröße X:

Zufallsgröße X-3-2-10123
P(X=k) 1 6 1 18 1 12 7 18 1 12 1 18 1 6

Zufallsgr. WS-Vert. (auch ohne zur.)

Beispiel:

In einer Urne sind zwei Kugeln, die mit der Zahl 2 beschriftet sind und vier Kugeln, die mit der Zahl 9 beschriftet sind. Es werden zwei Kugeln ohne Zurücklegen gezogen.Die Zufallsgröße X beschreibt das Produkt der Zahlen der beiden gezogenen Kugeln. Stelle eine Wahrscheinlichkeitsverteilung für die Zufallsgröße X auf.

Lösung einblenden

Für die Zufallsgröße X: 'Produkt der beiden Kugeln' sind folgende Werte möglich:

Zufallsgröße XX = 4X = 18X = 81
zugehörige
Ergebnisse
2 - 22 - 9
9 - 2
9 - 9
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(


Jetzt müssen die Wahrscheinlichkeiten der einzelnen Ereignisse erst mal (mit Hilfe eines Baums) berechnet werden.


Und somit können wir dann auch die Wahrscheinlichkeiten für die einzelnen Werte der Zufallsgröße berechnen.

Zufallsgröße XX = 4X = 18X = 81
zugehörige
Wahrscheinlichkeit P(X)
1 3 1 5 1 3 4 5
+ 2 3 2 5
2 3 3 5
  = 1 15 4 15 + 4 15 2 5



Hiermit ergibt sich die gesuchte Wahrscheinlichkeitsverteilung für die Zufallsgröße X:

Zufallsgröße X41881
P(X=k) 1 15 8 15 2 5

Zufallsgr. WS-Vert. (ziehen bis erstmals ...)

Beispiel:

Eine Lehrerin sammelt die Hausaufgaben von einigen Schülern ein, um zu kontrollieren, ob diese auch ordentlich gemacht wurden. Aus Zeitgründen möchte sie aber nicht alle, sondern nur ein paar wenige einsammeln, welche durch ein Losverfahren ausgewählt werden. Aus (der unbegründeten) Angst ungerecht behandelt zu werden, bestehen die 3 Jungs darauf, dass unbedingt immer eine Hausaufgabe eines der 15 Mädchen der Klasse eingesammelt wird. Deswegen wird solange gelost, bis das erste Mädchen gezogen wird.Die Zufallsgröße X beschreibt dabei die Anzahl der nach diesem Verfahren einsammelten Hausaufgaben. Stelle eine Wahrscheinlichkeitsverteilung für die Zufallsgröße X auf.
(Denk daran, die Brüche vollständig zu kürzen!)

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Da ja nur 3 Hausaufgaben vom Typ 'Jungs' vorhanden sind, muss spätestens im 4-ten Versuch (wenn dann alle Hausaufgaben vom Typ 'Jungs' bereits gezogen und damit weg sind) eine Hausaufgabe vom Typ 'Mädchen' gezogen werden.

Das heißt die Zufallsgröße X kann nur Werte zwischen 1 und 4 annehmen.

Aus dem reduzierten Baumdiagramm rechts kann man nun die Wahrscheinlichkeitsverteilung der Zufallsgröße X übernehmen:

Zufallsgröße X1234
P(X=k) 5 6 5 34 5 272 1 816

Zufallsgröße rückwärts

Beispiel:

In einer Urne sind 15 Kugeln, die mit verschiedenen Zahlen beschriftet sind. Dabei gibt es nur die Zahlen 3, 4 und 9 als Beschriftung. Es werden zwei Kugeln mit Zurücklegen gezogen. Die Zufallsgröße X beschreibt das Produkt der Zahlen der beiden gezogenen Kugeln. Bei der Wahrscheinlichkeitsverteilung von X sind nur der erste und der letzte Wert bekannt (siehe Tabelle). Wie viele Kugeln mit den oben genannten Zahlen als Beschriftung müssen jeweils in der Urne sein?

Zufallsgröße X91216273681
P(X=k) 49 225 ???? 16 225

Lösung einblenden

Für X=9 gibt es nur das Ereignis: '3'-'3', also dass zwei mal hintereinander '3' kommt.

Wenn p1 die Wahrscheinlichkeit von '3' ist, dann muss also für die Wahrscheinlichkeit, dass zwei mal hintereinander '3' kommt, gelten: P(X=9) = p1 ⋅ p1 (siehe Baumdiagramm).

Aus der Tabelle können wir aber P(X=9) = 49 225 heraus lesen, also muss gelten:

p1 ⋅ p1 = (p1)2 = 49 225 und somit p1 = 7 15 .

Ebenso gibt es für X=81 nur das Ereignis: '9'-'9', also dass zwei mal hintereinander '9' kommt.

Wenn p3 die Wahrscheinlichkeit von '9' ist, dann muss also für die Wahrscheinlichkeit, dass zwei mal hintereinander '9' kommt, gelten: P(X=81) = p3 ⋅ p3 (siehe Baumdiagramm).

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Aus der Tabelle können wir aber P(X=81) = 16 225 heraus lesen, also muss gelten:

p3 ⋅ p3 = (p3)2 = 16 225 und somit p3 = 4 15 .

Da es aber nur drei Optionen gibt, muss p1 + p2 + p3 = 1 gelten, also

p2 = 1 - p1 - p3 = 1 - 7 15 - 4 15 = 15 15 - 7 15 - 4 15 = 4 15

Um nun noch die jeweilige Anzahl der Kugeln mit gleicher Zahl zu ermittlen, müssen wir einfach die Wahrscheinlichkeit mit 15 multiplizieren, weil ja für die Wahrscheinlichkeit für eine der n Kugeln mit einer bestimmten Zahl gilt: p = n 15

Somit erhalten wir:

n3 = 7 15 ⋅ 15 = 7

n4 = 4 15 ⋅ 15 = 4

n9 = 4 15 ⋅ 15 = 4

Erwartungswerte

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind Vielfache
von Achtels-Kreisen)

Wie viele Punkte kann man bei dem abgebildeten Glücksrad erwarten?

Lösung einblenden

Die Zufallsgröße X beschreibt die Punktezahl auf einem Sektor des Glücksrads.

Erwartungswert der Zufallsgröße X

Ereignis 2 8 20 100
Zufallsgröße xi 2 8 20 100
P(X=xi) 3 8 2 8 2 8 1 8
xi ⋅ P(X=xi) 3 4 2 5 25 2

Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:

E(X)= 2⋅ 3 8 + 8⋅ 2 8 + 20⋅ 2 8 + 100⋅ 1 8

= 3 4 + 2+ 5+ 25 2
= 3 4 + 8 4 + 20 4 + 50 4
= 81 4

20.25

Faires Spiel - fehlende Auszahlung best.

Beispiel:

In einer Urne sind 6 Kugeln, die mit 10€ beschriftet sind, 5 Kugeln, die mit 16€ und 5 Kugeln, die mit 26€ beschriftet sind. Bei dem Spiel bekommt man den Betrag, der auf der Kugel steht, ausbezahlt. Außerdem sind noch weitere 4 Kugeln in der Urne. Mit welchem Betrag müsste man diese beschriften, damit das Spiel bei einem Einsatz von 19,9€ fair wäre?

Lösung einblenden

Die Zufallsgröße X beschreibt die Auszahlung.

Die Zufallsgröße Y beschreibt den Gewinn, also Auszahlung - Einsatz.

Erwartungswerte der Zufallsgrößen X und Y

Ereignis 10 16 26 ?
Zufallsgröße xi 10 16 26 x
Zufallsgröße yi (Gewinn) -9.9 -3.9 6.1 x-19.9
P(X=xi) 6 20 5 20 5 20 4 20
xi ⋅ P(X=xi) 3 4 13 2 4 20 ⋅ x
yi ⋅ P(Y=yi) - 59.4 20 - 19.5 20 30.5 20 4 20 ⋅(x-19.9)

Um den gesuchten Auszahlungsbetrag zu berrechnen hat man zwei Möglichkeiten:

Entweder stellt man eine Gleichung auf, so dass der Erwartungswert des Auszahlungsbetrags gleich des Einsatzes ist ...

E(X) = 19.9

6 20 · 10 + 5 20 · 16 + 5 20 · 26 + 4 20 x = 19.9

3 +4 + 13 2 + 4 20 x = 19.9

3 +4 + 13 2 + 1 5 x = 19,9
1 5 x + 27 2 = 19,9 |⋅ 10
10( 1 5 x + 27 2 ) = 199
2x +135 = 199 | -135
2x = 64 |:2
x = 32

... oder man stellt eine Gleichung auf, so dass der Erwartungswert des Gewinns gleich null ist:

E(Y) = 0

6 20 · ( -9,9 ) + 5 20 · ( -3,9 ) + 5 20 · 6,1 + 4 20 ( x -19,9 ) = 0

- 29,7 10 - 3,9 4 + 6,1 4 + 1 5 · x + 1 5 · ( -19,9 ) = 0

-2,97 -0,975 +1,525 + 1 5 x -3,98 = 0
1 5 x -6,4 = 0 |⋅ 5
5( 1 5 x -6,4 ) = 0
x -32 = 0 | +32
x = 32

In beiden Fällen ist also der gesuchte Betrag: 32

Erwartungswert ganz offen

Beispiel:

Eine Klasse möchte beim Schulfest ein Glücksrad mit Spielgeld anbieten. Dabei soll das Glücksrad in Sektoren aufgeteilt werden, in denen der Auszahlungsbetrag (z.B. 3€) drin steht. Nach langer Diskussion einigt man sich auf folgende Punkte:

  • Das Spiel mit dem Glücksrad muss fair sein
  • Der Einsatz soll 3€ betragen
  • Der minimale Auszahlungsbetrag soll 1€ sein
  • Der maximale Auszahlungsbetrag soll soll 15€ sein
  • Es sollen genau 4 Sektoren mit verschiedenen Auszahlungsbeträgen auf dem Glücksrad sein
Finde eine Möglichkeit für solch ein Glücksrad und trage diese in die Tabelle ein.

Lösung einblenden

Eine (von vielen möglichen) Lösungen:

Als erstes schreiben wir mal die Vorgaben in die Tabelle rein.

  Feld1 Feld2 Feld3 Feld4
X (z.B. Auszahlung) 1 15
Y Gewinn (Ausz. - Einsatz) -2 12
P(X) = P(Y)
Y ⋅ P(Y)

Jetzt setzen wir die Wahrscheinlichkeiten so, dass der negative Beitrag vom minimalen Betrag zum Erwartungswert den gleichen Betrag hat wie der positve vom maximalen Betrag.(dazu einfach jeweils den Gewinn in den Nenner der Wahrscheinlichkeit)

  Feld1 Feld2 Feld3 Feld4
X (z.B. Auszahlung) 1 15
Y Gewinn (Ausz. - Einsatz) -2 12
P(X) = P(Y) 1 2 1 12
Y ⋅ P(Y) -1 1

Die bisherigen Optionen vereinen eine Wahrscheinlichkeit von 1 2 + 1 12 = 7 12
Als Restwahrscheinlichkeit für die verbleibenden Beträge bleibt nun also 1- 7 12 = 5 12 .
Diese wird auf die beiden verbleibenden Optionen verteilt:

  Feld1 Feld2 Feld3 Feld4
X (z.B. Auszahlung) 1 15
Y Gewinn (Ausz. - Einsatz) -2 12
P(X) = P(Y) 1 2 5 24 5 24 1 12
Y ⋅ P(Y) -1 1

Damit nun der Erwartungswert =0 wird, müssen sich die beiden noch verbleibenden Anteile daran gegenseitig aufheben. Dies erreicht man, in dem man den Gewinn jeweils gleich 'weit vom Einsatz weg' (nämlich 1) setzt.

  Feld1 Feld2 Feld3 Feld4
X (z.B. Auszahlung) 1 2 4 15
Y Gewinn (Ausz. - Einsatz) -2 -1 1 12
P(X) = P(Y) 1 2 5 24 5 24 1 12
Winkel 180° 75° 75° 30°
Y ⋅ P(Y) -1 - 5 24 5 24 1

Wenn man nun den Erwartungswert berechnet, kommt der gesuchte heraus:

E(Y)= -2⋅ 1 2 + -1⋅ 5 24 + 1⋅ 5 24 + 12⋅ 1 12

= -1 - 5 24 + 5 24 + 1
= - 24 24 - 5 24 + 5 24 + 24 24
= 0 24
= 0

Erwartungswerte bei 'Ziehen bis erstmals ...'

Beispiel:

Aus einem Kartenstapel mit 4 Karten der Farbe Herz und 3 weiteren Karten soll solange eine Karte gezogen werden, bis eine Herz-Karte erscheint. Bestimme den Erwartungswert für die Anzahl der Ziehungen, bis das erste Herz erscheint.
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Wahrscheinlichkeiten für die verschiedenen Ausgänge

Die Wahrscheinlichkeit für ein 'Herz' im 1-ten Versuch st: 4 7

Die Wahrscheinlichkeit für ein 'Herz' im 2-ten Versuch st: 2 7

Die Wahrscheinlichkeit für ein 'Herz' im 3-ten Versuch st: 4 35

Die Wahrscheinlichkeit für ein 'Herz' im 4-ten Versuch st: 1 35

Die Zufallsgröße X beschreibt die Anzahl der Ziehungen. bis das erste Herz gekommen ist.

Erwartungswert der Zufallsgröße X

Ereignis 1 2 3 4
Zufallsgröße xi 1 2 3 4
P(X=xi) 4 7 2 7 4 35 1 35
xi ⋅ P(X=xi) 4 7 4 7 12 35 4 35

Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:

E(X)= 1⋅ 4 7 + 2⋅ 2 7 + 3⋅ 4 35 + 4⋅ 1 35

= 4 7 + 4 7 + 12 35 + 4 35
= 56 35
= 8 5

1.6

Erwartungswerte mit gesuchten Anzahlen im WS-Baum

Beispiel:

Auf einen Schüleraustausch bewerben sich 15 Mädchen und 8 Jungs. Weil aber leider weniger Plätze zur Verfügung stehen, muss gelost werden. Bestimme den Erwartungswert (als Bruch oder Dezimalzahl) für die Anzahl an Mädchen bei den ersten 3 verlosten Plätzen.
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Wahrscheinlichkeiten für die verschiedenen Ausgänge

EreignisP
Mädchen -> Mädchen -> Mädchen 65 253
Mädchen -> Mädchen -> Jungs 40 253
Mädchen -> Jungs -> Mädchen 40 253
Mädchen -> Jungs -> Jungs 20 253
Jungs -> Mädchen -> Mädchen 40 253
Jungs -> Mädchen -> Jungs 20 253
Jungs -> Jungs -> Mädchen 20 253
Jungs -> Jungs -> Jungs 8 253

Die Wahrscheinlichkeit für 0 mal 'Mädchen' ist: 8 253

Die Wahrscheinlichkeit für 1 mal 'Mädchen' ist: 20 253 + 20 253 + 20 253 = 60 253

Die Wahrscheinlichkeit für 2 mal 'Mädchen' ist: 40 253 + 40 253 + 40 253 = 120 253

Die Wahrscheinlichkeit für 3 mal 'Mädchen' ist: 65 253

Die Zufallsgröße X beschreibt die Anzahl an Mädchen unter den drei verlosten Plätzen.

Erwartungswert der Zufallsgröße X

Ereignis 0 1 2 3
Zufallsgröße xi 0 1 2 3
P(X=xi) 8 253 60 253 120 253 65 253
xi ⋅ P(X=xi) 0 60 253 240 253 195 253

Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:

E(X)= 0⋅ 8 253 + 1⋅ 60 253 + 2⋅ 120 253 + 3⋅ 65 253

= 0+ 60 253 + 240 253 + 195 253
= 0 253 + 60 253 + 240 253 + 195 253
= 495 253
= 45 23

1.96

Erwartungswerte mit best. Optionen im WS-Baum

Beispiel:

In einem Stapel Karten mit 8 Asse, 9 Könige, 5 Damen und 3 Buben werden 2 Karten gezogen. Dabei zählen 2 Asse 1000, 2 Könige 400, 2 Damen 220 und 2 Buben 50 Punkte. Außerdem gibt es für ein Paar aus Dame und König 20 Punkte. Wie viele Punkte kann man bei diesem Spiel erwarten?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Wahrscheinlichkeiten für die verschiedenen Ausgänge

EreignisP
As -> As 7 75
As -> König 3 25
As -> Dame 1 15
As -> Bube 1 25
König -> As 3 25
König -> König 3 25
König -> Dame 3 40
König -> Bube 9 200
Dame -> As 1 15
Dame -> König 3 40
Dame -> Dame 1 30
Dame -> Bube 1 40
Bube -> As 1 25
Bube -> König 9 200
Bube -> Dame 1 40
Bube -> Bube 1 100

Die Wahrscheinlichkeit für '2 Asse' ist:

P('As'-'As')
= 7 75

Die Wahrscheinlichkeit für '2 Könige' ist:

P('König'-'König')
= 3 25

Die Wahrscheinlichkeit für '2 Damen' ist:

P('Dame'-'Dame')
= 1 30

Die Wahrscheinlichkeit für '2 Buben' ist:

P('Bube'-'Bube')
= 1 100

Die Wahrscheinlichkeit für 'Paar (D&K)' ist:

P('König'-'Dame') + P('Dame'-'König')
= 3 40 + 3 40 = 3 20

Die Zufallsgröße X beschreibt die gewonnenen Punkte.

Erwartungswert der Zufallsgröße X

Ereignis 2 Asse 2 Könige 2 Damen 2 Buben Paar (D&K)
Zufallsgröße xi 1000 400 220 50 20
P(X=xi) 7 75 3 25 1 30 1 100 3 20
xi ⋅ P(X=xi) 280 3 48 22 3 1 2 3

Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:

E(X)= 1000⋅ 7 75 + 400⋅ 3 25 + 220⋅ 1 30 + 50⋅ 1 100 + 20⋅ 3 20

= 280 3 + 48+ 22 3 + 1 2 + 3
= 560 6 + 288 6 + 44 6 + 3 6 + 18 6
= 913 6

152.17