Aufgabenbeispiele von MGK Klasse 9

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


einfache Modulo Aufgabe

Beispiel:

Bestimme (die kleinste natürliche Zahl für die gilt:) 62 mod 4.

Lösung einblenden

Das nächst kleinere Vielfache von 4 ist 60, weil ja 15 ⋅ 4 = 60 ist.

Also bleibt als Rest eben noch 62 - 60 = 2.

Somit gilt: 62 mod 4 ≡ 2.

Modulo in einem Intervall

Beispiel:

Bestimme eine Zahl n zwischen 20 und 29 für die gilt n ≡ 31 mod 3.

Lösung einblenden

Das nächst kleinere Vielfache von 3 ist 30, weil ja 10 ⋅ 3 = 30 ist.

Also bleibt als Rest eben noch 31 - 30 = 1.

Somit gilt: 31 mod 3 ≡ 1.

Wir suchen also eine Zahl zwischen 20 und 29 für die gilt: n ≡ 1 mod 3.

Dazu suchen wir erstmal ein Vielfaches von 3 in der Nähe von 20, z.B. 21 = 7 ⋅ 3

Jetzt muss die gesuchte Zahl ja aber nicht ≡ 0 mod 3 , sondern ≡ 1 mod 3 sein, also addieren wir noch 1 auf die 21 und erhalten so 22.

Somit gilt: 22 ≡ 31 ≡ 1 mod 3.

Modulo addieren

Beispiel:

Berechne ohne WTR: (146 + 72) mod 7.

Lösung einblenden

Um längere Rechnungen zu vermeiden, rechnen wir:

(146 + 72) mod 7 ≡ (146 mod 7 + 72 mod 7) mod 7.

146 mod 7 ≡ 6 mod 7 kann man relativ leicht bestimmen, weil ja 146 = 140+6 = 7 ⋅ 20 +6.

72 mod 7 ≡ 2 mod 7 kann man relativ leicht bestimmen, weil ja 72 = 70+2 = 7 ⋅ 10 +2.

Somit gilt:

(146 + 72) mod 7 ≡ (6 + 2) mod 7 ≡ 8 mod 7 ≡ 1 mod 7.

Modulo multiplizieren

Beispiel:

Berechne ohne WTR: (28 ⋅ 31) mod 5.

Lösung einblenden

Um längere Rechnungen zu vermeiden, rechnen wir:

(28 ⋅ 31) mod 5 ≡ (28 mod 5 ⋅ 31 mod 5) mod 5.

28 mod 5 ≡ 3 mod 5 kann man relativ leicht bestimmen, weil ja 28 = 25 + 3 = 5 ⋅ 5 + 3 ist.

31 mod 5 ≡ 1 mod 5 kann man relativ leicht bestimmen, weil ja 31 = 30 + 1 = 6 ⋅ 5 + 1 ist.

Somit gilt:

(28 ⋅ 31) mod 5 ≡ (3 ⋅ 1) mod 5 ≡ 3 mod 5.

gemeinsame Modulos finden

Beispiel:

Finde alle natürlichen Zahlen m ≥ 2, für die gilt :
21 mod m = 31 mod m.

Lösung einblenden

1. (etwas umständliche) Möglichkeit:

Wir probieren einfach alle natürliche Zahlen m<= 21 aus, ob zufällig 21 mod m = 31 mod m gilt:

m=2: 21 mod 2 = 1 = 1 = 31 mod 2

m=3: 21 mod 3 = 0 ≠ 1 = 31 mod 3

m=4: 21 mod 4 = 1 ≠ 3 = 31 mod 4

m=5: 21 mod 5 = 1 = 1 = 31 mod 5

m=6: 21 mod 6 = 3 ≠ 1 = 31 mod 6

m=7: 21 mod 7 = 0 ≠ 3 = 31 mod 7

m=8: 21 mod 8 = 5 ≠ 7 = 31 mod 8

m=9: 21 mod 9 = 3 ≠ 4 = 31 mod 9

m=10: 21 mod 10 = 1 = 1 = 31 mod 10

m=11: 21 mod 11 = 10 ≠ 9 = 31 mod 11

m=12: 21 mod 12 = 9 ≠ 7 = 31 mod 12

m=13: 21 mod 13 = 8 ≠ 5 = 31 mod 13

m=14: 21 mod 14 = 7 ≠ 3 = 31 mod 14

m=15: 21 mod 15 = 6 ≠ 1 = 31 mod 15

m=16: 21 mod 16 = 5 ≠ 15 = 31 mod 16

m=17: 21 mod 17 = 4 ≠ 14 = 31 mod 17

m=18: 21 mod 18 = 3 ≠ 13 = 31 mod 18

m=19: 21 mod 19 = 2 ≠ 12 = 31 mod 19

m=20: 21 mod 20 = 1 ≠ 11 = 31 mod 20

m=21: 21 mod 21 = 0 ≠ 10 = 31 mod 21

2. (deutlich schnellere) Möglichkeit:

Wir erinnern uns daran, dass
a mod m ≡ b mod m
wenn m ein Teiler von (a-b) bzw. (b-a) ist.

Somit müssen wir nur die Teiler von (31 - 21) = 10 bestimmen:

die gesuchten Zahlen sind somit:

2; 5; 10