Aufgabenbeispiele von Rückwärtsaufgaben

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


p gesucht (n-te Wurzel)

Beispiel:

An einem Glücksrad wird 2 mal gedreht. Die Wahrscheinlichkeit, dass bei allen 2 Durchgängen die Farbe 'blau' kommt, ist 0,3. Wie groß muss bei diesem Glücksrad die Wahrscheinlichkeit für das blaue Feld sein?
(Bitte auf 3 Stellen runden!)

Lösung einblenden

P=0.3 ist die Wahrscheinlichkeit, dass 2 mal das Ereignis mit der Wahrscheinlichkeit p eintritt.

Es gilt also 0.3=p2

=>p=0.32 ≈ 0.5477

Binomialvert. mit variablem n (höchst.)

Beispiel:

Eine Fluggesellschaft geht davon aus, dass 12% der gekauften Tickets gar nicht eingelöst werden. Wieviel Tickets kann sie für ihre 34-Platzmaschine höchstens verkaufen, so dass es zu mindestens 70% Wahrscheinlichkeit zu keiner Überbelegung kommt.

Lösung einblenden
nP(X≤k)
......
370.8373
380.6842
390.5098
......

Die Zufallsgröße X gibt die Anzahl der Ticketbesitzer, die tatsächlich fliegen an und ist im Idealfall binomialverteilt mit p = 0.88 und variablem n.

Es muss gelten: P0.88n (X34) ≥ 0.7

Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:

Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 88% der Versuche mit einem Treffer. Also müssten dann doch bei 34 0.88 ≈ 39 Versuchen auch ungefähr 34 (≈0.88⋅39) Treffer auftreten.

Wir berechnen also mit unserem ersten n=39:
P0.88n (X34) ≈ 0.5098 (TI-Befehl: Binomialcdf ...)

Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.7 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.

Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.7 überschritten wird.

Aus der Werte-Tabelle (siehe links) erkennt man dann, dass letztmals bei n=37 die gesuchte Wahrscheinlichkeit über 70% ist.

gesuchtes p (ohne zurücklegen)

Beispiel:

In einer Urne sind 40 Kugeln. Alle Kugeln sind entweder rot oder schwarz. Es sollen 2 Kugeln gleichzeitig gezogen werden. Wie viele schwarze Kugeln müssen in der Urne mindestens sein, damit mit einer Wahrscheinlichkeit von mindestens 75% unter den beiden gezogenen Kugeln mindestens eine schwarze ist?

Lösung einblenden
Anzahl der schwarzen Kugeln in der UrneP('mindestens eine schwarze Kugel')
......
31- 37 40 36 39 =1- 111 130 ≈0.1462
41- 36 40 35 39 =1- 21 26 ≈0.1923
51- 35 40 34 39 =1- 119 156 ≈0.2372
61- 34 40 33 39 =1- 187 260 ≈0.2808
71- 33 40 32 39 =1- 44 65 ≈0.3231
81- 32 40 31 39 =1- 124 195 ≈0.3641
91- 31 40 30 39 =1- 31 52 ≈0.4038
101- 30 40 29 39 =1- 29 52 ≈0.4423
111- 29 40 28 39 =1- 203 390 ≈0.4795
121- 28 40 27 39 =1- 63 130 ≈0.5154
131- 27 40 26 39 =1- 9 20 ≈0.55
141- 26 40 25 39 =1- 5 12 ≈0.5833
151- 25 40 24 39 =1- 5 13 ≈0.6154
161- 24 40 23 39 =1- 23 65 ≈0.6462
171- 23 40 22 39 =1- 253 780 ≈0.6756
181- 22 40 21 39 =1- 77 260 ≈0.7038
191- 21 40 20 39 =1- 7 26 ≈0.7308
201- 20 40 19 39 =1- 19 78 ≈0.7564
......

Gesucht ist die Wahrscheinlichkeit von 'mindestens eine schwarze Kugel'.

Das Gegenereignis ('keine schwarze Kugel') ist sehr viel einfacher zu berechnen (weil dies nur ein Pfad im Baumdiagramm ist):
Wenn beispielsweise die Anzahl der schwarzen Kugeln in der Urne=3 ist, dann ist doch die Wahrscheinlichkeit für 'keine schwarze Kugel'= 37 40 36 39 (beim ersten Zufallsversuch 37 40 und beim zweiten 36 39 weil dann ja bereits 'eine Kugel weniger im Topf ist'), also ist die Wahrscheinlichkeit für 'mindestens eine schwarze Kugel'=1- 37 40 36 39

Wir erhöhen nun schrittweise immer die Anzahl der schwarzen Kugeln in der Urne um 1 und probieren aus, wie sich das auf die gesuchte Gesamt-Wahrscheinlichkeit für 'mindestens eine schwarze Kugel' auswirkt (siehe Tabelle links)

Als Startwert wählen wir als p=3. (man kann auch alles als Funktion in den WTR eingeben: y=1-(40-x)/40*(39-x)/39)

In dieser Tabelle erkennen wir, dass erstmals bei 20 als 'Anzahl der schwarzen Kugeln in der Urne' die gesuchte Wahrscheinlichkeit über 75% auftritt.
Die gesuchte Anzahl der schwarzen Kugeln in der Urne muss also mindestens 20 sein.

Binomialvert. mit variablem p (diskret) für WTR

Beispiel:

In einer Urne sind 4 rote und einige schwarze Kugeln. Es soll 18 mal mit Zurücklegen gezogen werden. Wie viele schwarze Kugeln müssen in der Urne mindestens sein, damit mit einer Wahrscheinlichkeit von mindestens 75% unter den 18 gezogenen Kugeln nicht mehr als 3 rote sind?

Lösung einblenden
pP(X≤3)
......
4 24 0.6479
4 25 0.6771
4 26 0.7038
4 27 0.7281
4 28 0.7501
......

Die Zufallsgröße X gibt die Anzahl der gezogenen Kugeln mit der Farbe rot an. X ist binomialverteilt mit n=18 und unbekanntem Parameter p.

Es muss gelten: Pp18 (X3) =0.75 (oder mehr)

Wir wissen, dass der Zähler bei unserer Einzelwahrscheinlichkeit p 4 sein muss, da es ja genau 4 günstige Fälle gibt.

Wir müssen nun bei verschiedenen Nennern untersuchen, wie hoch die gesuchte Wahrscheinlichkeit Pp18 (X3) ('höchstens 3 Treffer bei 18 Versuchen') bei diesen Nennern wird (siehe Tabelle links)

Um einen günstigen Startwert zu finden wählen wir mal als p= 3 18 . Mit diesem p wäre ja 3= 3 18 ⋅18 der Erwartungswert und somit Pp18 (X3) irgendwo in der nähe von 50%. Wenn wir nun p= 3 18 mit 4 3 erweitern (so dass wir auf den Zähler 4 kommen) und den Nenner abrunden, müssten wir mit p= 4 24 einen brauchbaren Einstiegswert für dieses Probieren erhalten.

In dieser Tabelle erkennen wir, dass erstmals bei der Einzelwahrscheinlichkeit p= 4 28 die gesuchte Wahrscheinlichkeit über 75% steigt.
Der Nenner, also die Anzahl aller Kugeln, muss also mindestens 28 sein.

Also werden noch 24 zusätzliche Optionen (also schwarze Kugeln) benötigt.