Aufgabenbeispiele von Basics

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


0 oder 1 Treffer bei n Versuchen

Beispiel:

Ein idealer Würfel wird 3 mal geworfen. Bestimme die Wahrscheinlichkeit dafür, dass jeder Wurf eine "6" ist, außer beim ersten Versuch.

Lösung einblenden

Die Wahrscheinlichkeit für einen Treffer (also hier, dass eine "6" gewürfelt wird) beträgt p = 1 6 , für einen Nicht-Treffer (also hier, dass keine "6" gewürfelt wird) beträgt sie q = 1 - 1 6 = 5 6 . Da ja der Nicht-Treffer genau im ersten Durchgang kommen soll, ist auch hier nur ein Pfad im Baumdiagramm möglich. Dessen Wahrscheinlichkeit lässt sich dann wie folgt berechnen:

P = 5 6 1 6 1 6 = 5 6 · ( 1 6 ) 2 ≈ 0.0231 .

Binomialkoeffizient

Beispiel:

Berechne ohne Taschenrechner: ( 16 15 )

Lösung einblenden

Wenn man von der allgememeinen Formel für den Binomialkoeffizient
( 16 15 ) = 16! 15! ⋅ (16 - 15)! = 16! 15! ⋅ 1! = 16⋅15⋅14⋅13⋅12⋅11⋅10⋅9⋅8⋅7⋅6⋅5⋅4⋅3⋅2⋅1 15⋅14⋅13⋅12⋅11⋅10⋅9⋅8⋅7⋅6⋅5⋅4⋅3⋅2⋅1 ⋅ 1
ausgeht, sieht man schnell, dass man mit der
15! = 15⋅14⋅13⋅12⋅11⋅10⋅9⋅8⋅7⋅6⋅5⋅4⋅3⋅2⋅1
rechts im Zähler und links im Nenner kürzen kann, so dass gilt:

( 16 15 ) = 16 1

= 16

Binomialkoeffizient Anwendungen

Beispiel:

Eine Mathelehrerin verlost unter den 10 SchülerInnen ihrer 8. Klasse, die eine Zusatzaufgabe gemacht haben, 2 Matherätsel-Knobelbücher. Natürlich kann jeder höchstens eins bekommen. Wie viele verschiedene Möglichkeiten gibt es für die 2er-Gruppe der glücklichen Gewinner?

Lösung einblenden

Für die erste Stelle ist jede SchülerIn möglich. Es gibt also 10 Möglichkeiten. Für die zweite Stelle ist die bereits als erstes gewählte SchülerIn nicht mehr möglich, es gibt also nur noch 9 Möglichkeiten.

Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren:

Es gibt also 109 = 90 Möglichkeiten, die 10 Möglichkeiten (SchülerInnen) auf die 2 "Ziehungen" (Knobelbücher) zu verteilen.

Wir haben jetzt dabei aber genau unterschieden an welcher Stelle was gezogen bzw. gewählt wurde. Also wären zum Beispiel Antonia - Bea - Carla und Bea - Carla - Antonia zwei unterschiedliche Ergebnisse. In unserem Fall hier soll diese Reihenfolge aber keine Rolle spielen. Es interessiert nur, wer in der 2er-Gruppe drin ist, nicht an welcher Stelle.

Wir berechnen jetzt also, wie viele mögliche Reihenfolgen pro 2er-Gruppe möglich sind.

  • Für die erste Stelle ist jede(r) aus der 2er-Gruppe möglich. Es gibt also 2 Möglichkeiten.
  • Für die zweite Stelle ist der/die an erster Stelle stehende nicht mehr möglich, es gibt also nur noch 1 Möglichkeiten.

Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren und erhalten 21 = 2 Möglichkeiten für die verschiedenen Reihenfolgen innerhalb einer 2er-Gruppe.

Wir müssen deswegen die 90 Möglichkeiten für nach Reihenfolge sortierte 2er-Gruppen durch die 2 Möglichkeiten, die 2er-Gruppe anzuordnen, teilen.

Hieraus ergeben sich 90 2 = 45 Möglichkeiten für 2er-Gruppen, die aus 10 Elementen (SchülerInnen) gebildet werden.

Die hier durchgeführte Berechnung 109 21 könnte man mit 8! erweitern würde so auf die Formel für den Binomialkoeffizient kommen:

45 = 109 21 = 109 8 7 6 5 4 3 2 1 21 8 7 6 5 4 3 2 1 = 10! 2! ⋅ 8! = ( 10 2 )

Wahrscheinlichkeiten mit Binom.Koeff.

Beispiel:

In einer Urne befinden sich 20 Kugeln, die mit den Zahlen 1 bis 20 beschriftet sind.

Es werden 6 Kugeln zufällig aus der Urne gezogen. Wie groß ist die Wahrscheinlichkeit, dass bei den gezogenen Kugeln die 7, die 13 und die 16 dabei sind?

Lösung einblenden

Es gibt insgesamt ( 20 6 ) = 20! 6! ⋅ 14! = 20⋅19⋅18⋅17⋅16⋅15 6⋅5⋅4⋅3⋅2⋅1 = 38760 verschiedene Möglichkeiten, die 6 Kugeln aus den 20 zu ziehen, bzw. von 20 Zahlen 6 anzukreuzen.

Wenn man jetzt die Möglichkeiten zählen will, wie viele Möglichkeiten es gibt, wenn drei der gezogenen Zahlen die 7, die 13 und die 16 sind, bzw. wie viele Möglichkeiten es gibt, 6 von 20 Zahlen anzukreuzen, wobei drei Kreuze sicher auf der der 7, der 13 und der 16 sein müssen, dann ist das doch genau das gleiche, wie wenn man die Möglichkeiten zählt, 3 Kreuze auf 17 Zahlen (alle außer der 7, der 13 und der 16) zu setzen, also ( 17 3 ) = 17! 3! ⋅ 14! = 17⋅16⋅15 3⋅2⋅1 = 680.

Die Wahrscheinlichkeit lässt sich somit mit der Laplace-Formel berechnen:

P = Anzahl der gewünschten Ereignisse Anzahl der möglichen Ereignisse = 680 38760 ≈ 0.0175, also ca. 1.75%.

Formel v. Bernoulli

Beispiel:

Eine Münze wird 84 mal geworfen. Wie groß ist die Wahrscheinlichkeit dass genau 36 mal "Zahl" (p=0,5) geworfen wird?

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der Würfe mit Zahl an. X ist binomialverteilt mit n=84 und p=0.5.

P0.584 (X=36) = ( 84 36 ) 0.536 0.548 =0.037103971627562≈ 0.0371
(TI-Befehl: binompdf(84,0.5,36))

kumulierte WS aus Histogramm finden

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

In der Abbildung rechts ist das Histogramm einer binomialverteilten Zufallsgröße X zu sehen. Finde das größte k, für das gilt P(X ≥ k) ≥ 0.7.

Lösung einblenden

Wenn P(X ≥ k) ≥ 0.7 sein soll, bedeutet das doch, dass sie Summe der Säulenhöhen von k bis zum rechten Rand mindestens 0.7 sein muss. Das ist dann aber doch gleichbedeutend, wie dass für die restlichen Säulenhöhen links von 0 bis k-1 höchstens 1-0.7=0.3 als Wahrscheinlichkeit übrig bleiben darf.

Wir lesen einfach die Säulenhöhen aus dem Histogramm ab und addieren diese Werte:

kP(X = k)P(X ≤ k)
0≈ 0.02≈ 0 + 0.02 = 0.02
1≈ 0.09≈ 0.02 + 0.09 = 0.11
2≈ 0.2≈ 0.11 + 0.2 = 0.31
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Während P(X ≤ 1) = 0.11 also noch klar unter der geforderten Wahrscheinlichkeit von 0.3 liegt, ist P(X ≤ 2) = 0.31 klar darüber.

Oder andersrum: P(X ≥ 2) = 1 - P(X ≤ 1) = 0.89 (die Summe der blauen Säulenhöhen von 2 bis 11) ist klar über der geforderten Wahrscheinlichkeit von 0.7, während P(X ≥ 3) = 1 - P(X ≤ 2) = 0.69 (die Summe der Säulenhöhen von 3 bis 11) klar darunter liegt.

Somit ist das gesuchte k = 2.

kumulierte Binomialverteilung

Beispiel:

Ein Fortbildungsteilnehmer ermüdet mit einer Wahrscheinlichkeit von 70%. An einer Fortbildung nehmen 45 Personen teil. Wie groß ist die Wahrscheinlichkeit, dass höchstens 35 Personen ermüden?

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der ermüdeten Personen an. X ist binomialverteilt mit n=45 und p=0.7.

P0.745 (X35) = P0.745 (X=0) + P0.745 (X=1) + P0.745 (X=2) +... + P0.745 (X=35) = 0.906630914296 ≈ 0.9066
(TI-Befehl: binomcdf(45,0.7,35))

Binomialverteilung X>=k

Beispiel:

Ein Würfel wird 26 mal geworfen. Wie groß ist die Wahrscheinlichkeit dass mindestens 3 mal eine 6 (p=1/6) geworfen wird?

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der gewürfelten Sechser an. X ist binomialverteilt mit n=26 und p= 1 6 .

0
1
2
3
4
5
...

P 1 6 26 (X3) = 1 - P 1 6 26 (X2) = 0.8323
(TI-Befehl: 1-binomcdf(26, 1 6 ,2))

Binomialverteilung l < X < k

Beispiel:

Ein Scherzkeks in einer Glückskeksfabrik backt in jeden achten Glückskeks eine scharfe Peperoni ein. Wie groß ist die Wahrscheinlichkeit, mehr als 9 und höchstens 12 Glückskekse mit einer Peproni zu erwischen, wenn man 65 Glückskekse kauft?

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der Glückskekse mit einer Peperoni an. X ist binomialverteilt mit n=65 und p=0.125.

P0.12565 (10X12) =

...
7
8
9
10
11
12
13
14
...

P0.12565 (X12) - P0.12565 (X9) ≈ 0.943 - 0.7088 ≈ 0.2342
(TI-Befehl: binomcdf(65,0.125,12) - binomcdf(65,0.125,9))