nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

p gesucht (n-te Wurzel)

Beispiel:

Bei einer Tombola werden elektronische Lose so verkauft, dass bei jedem Los jede Preiskategorie immer die gleiche Gewinnwahrscheinlichkeit hat. Aus Marketinggründen wird dabei auch ein Vierer-Pack angeboten. Dabei wird geworben, dass mit einer Wahrscheinlichkeit von 83% bei jedem Viererpack mindestens ein hochwertiger Preis dabei ist. Wie hoch muss man die Einzelwahrscheinlichkeit für einen hochwertigen Preis setzen, damit dieses Versprechen eingehalten wird?
(Bitte auf 3 Stellen runden!)

Lösung einblenden

P=0.83 ist die Wahrscheinlichkeit für mindestens 1 Treffer bei bei 4 Durchgängen, also ist 1-P=0.17 die Wahrscheinlichkeit für keinen Treffer bei bei 4 Durchgängen.

Es gilt also 0.17=(1-p)4

=>1-p=0.174 ≈ 0.6421

Die gesuchte Einzelwahrscheinlichkeit p ist dann also 1-0.6421 ≈ 0.3579

Binomialvert. mit variablem n (mind)

Beispiel:

Bei einem Zufallsexperiment beträgt die Wahrscheinlichkeit für einen Treffer p=0,7.Wie oft muss man das Zufallsexperiment mindestens wiederholen (oder wie groß muss die Stichprobe sein), um mit mind. 90% Wahrscheinlichkeit, mindestens 20 Treffer zu erzielen ?

Lösung einblenden
nP(X≤k)
......
290.364
300.2696
310.1924
320.1326
330.0884
......

Die Zufallsgröße X gibt die Anzahl der Treffer an und ist im Idealfall binomialverteilt mit p = 0.7 und variablem n.

Es muss gelten: P0.7n (X20) ≥ 0.9

Weil man ja aber P0.7n (X20) nicht in den WTR eingeben kann, müssen wir diese Wahrscheinlichkeit über die Gegenwahrscheinlichkeit berechnen:

P0.7n (X20) = 1 - P0.7n (X19) ≥ 0.9 |+ P0.7n (X19) - 0.9

0.1 ≥ P0.7n (X19) oder P0.7n (X19) ≤ 0.1

Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:

Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 70% der Versuche mit einem Treffer. Also müssten dann doch bei 20 0.7 ≈ 29 Versuchen auch ungefähr 20 (≈0.7⋅29) Treffer auftreten.

Wir berechnen also mit unserem ersten n=29:
P0.7n (X19) ≈ 0.364 (TI-Befehl: Binomialcdf ...)

Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.1 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.

Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.1 überschritten wird.

Aus der Werte-Tabelle (siehe links) erkennt man dann, dass erstmals bei n=33 die gesuchte Wahrscheinlichkeit unter 0.1 ist.

n muss also mindestens 33 sein, damit P0.7n (X19) ≤ 0.1 oder eben P0.7n (X20) ≥ 0.9 gilt.

gesuchtes p (ohne zurücklegen)

Beispiel:

Bei einer Tombola sind 50 Lose im Topf. Darunter sind auch einige Nieten. Um die Käufer nicht zu verärgern soll die Wahrscheinlichkeit, dass von 2 gleichzeitig gezogenen Losen höchstens eines davon eine Niete ist, bei mindestens 90% liegen. Wieviel der 50 Lose dürfen höchstens Nieten sein?

Lösung einblenden
Anzahl der Nieten im LostopfP('höchstens eine Niete')
......
61- 6 50 5 49 =1- 3 245 ≈0.9878
71- 7 50 6 49 =1- 3 175 ≈0.9829
81- 8 50 7 49 =1- 4 175 ≈0.9771
91- 9 50 8 49 =1- 36 1225 ≈0.9706
101- 10 50 9 49 =1- 9 245 ≈0.9633
111- 11 50 10 49 =1- 11 245 ≈0.9551
121- 12 50 11 49 =1- 66 1225 ≈0.9461
131- 13 50 12 49 =1- 78 1225 ≈0.9363
141- 14 50 13 49 =1- 13 175 ≈0.9257
151- 15 50 14 49 =1- 3 35 ≈0.9143
161- 16 50 15 49 =1- 24 245 ≈0.902
171- 17 50 16 49 =1- 136 1225 ≈0.889
......

Gesucht ist die Wahrscheinlichkeit von 'höchstens eine Niete'.

Das Gegenereignis ('genau zwei Nieten') ist sehr viel einfacher zu berechnen (weil dies nur ein Pfad im Baumdiagramm ist):
Wenn beispielsweise die Anzahl der Nieten im Lostopf=6 ist, dann ist doch die Wahrscheinlichkeit für 'genau zwei Nieten'= 6 50 5 49 (beim ersten Zufallsversuch 6 50 und beim zweiten 5 49 weil dann ja bereits 'eine Kugel weniger im Topf ist'), also ist die Wahrscheinlichkeit für 'höchstens eine Niete'=1- 6 50 5 49

Wir erhöhen nun schrittweise immer die Anzahl der Nieten im Lostopf um 1 und probieren aus, wie sich das auf die gesuchte Gesamt-Wahrscheinlichkeit für 'höchstens eine Niete' auswirkt (siehe Tabelle links)

Als Startwert wählen wir als p=6. (man kann auch alles als Funktion in den WTR eingeben: y=1-x/50*(x-1)/49)

In dieser Tabelle erkennen wir, dass letztmals bei 16 als 'Anzahl der Nieten im Lostopf' die gesuchte Wahrscheinlichkeit über 90% auftritt.
Die gesuchte Anzahl der Nieten im Lostopf darf also höchstens 16 sein.

Binomialvert. mit variablem p (diskret) für WTR

Beispiel:

In einer Urne sind 3 rote und einige schwarze Kugeln. Es soll 26 mal mit Zurücklegen gezogen werden. Wie viele schwarze Kugeln dürfen in der Urne höchstens sein, damit mit einer Wahrscheinlichkeit von mindestens 85% unter den 26 gezogenen Kugeln nicht mehr als 21 schwarze sind?

Lösung einblenden
pP(X≤21)
......
3 6 0.9997
4 7 0.9971
5 8 0.987
6 9 0.9642
7 10 0.9267
8 11 0.8759
9 12 0.8156
......

Die Zufallsgröße X gibt die Anzahl der gezogenen Kugeln mit der Farbe schwarz an. X ist binomialverteilt mit n=26 und unbekanntem Parameter p.

Es muss gelten: Pp26 (X21) = 0.85 (oder mehr)

Wir wissen, dass der Nenner bei unserer Einzelwahrscheinlichkeit p immer um 3 größer sein muss als der Zähler.

Deswegen erhöhen wir nun schrittweise immer den Zähler und Nenner bei der Einzelwahrscheinlichkeit um 1 und probieren aus, wie sich das auf die gesuchte Wahrscheinlichkeit Pp26 (X21) ('höchstens 21 Treffer bei 26 Versuchen') auswirkt (siehe Tabelle links)

Als Startwert wählen wir als p= 3 6 . (Durch Ausprobieren erkennt man, dass vorher die Wahrscheinlichkeit immer fast 1 ist)

In dieser Tabelle erkennen wir, dass letztmals bei der Einzelwahrscheinlichkeit p= 8 11 die gesuchte Wahrscheinlichkeit über 85% bleibt.
Die Anzahl der schwarzen Kugeln, die hinzugefügt wird, darf also höchstens 8 sein.