nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Bernoulli-Formel vervollständigen (einfach)

Beispiel:

Bei einem Glücksrad ist die Wahrscheinlichkeit im grünen Bereich zu landen bei p=0,3. Gesucht ist die Wahrscheinlichkeit bei 40 Versuchen genau 22 mal im grünen Bereich zu landen.

Bestimme hierfür a, b, c, d und e so, dass man mit der folgenden Formel die gesuchte Wahrscheinlichkeit berechnen kann.

P(X = 22) = ( a b ) 0.3c de

Lösung einblenden

Man könnte die Wahrscheinlichkeit ja theoretisch auch mit einem Baumdiagramm mit 40 Ebenen lösen.

Der Binomialkoeffizient ( a b ) vorne steht dann für die Anzahl der relevanten Pfade, also der Pfade, bei denen 22 mal getroffen und 18 mal nicht getroffen wird. Davon gibt es ( n k ) , wobei n für die Anzahl aller Versuche und k für die Anzahl der Treffer steht, also muss hier a=40 und b=22 sein.

Die beiden Potenzen danach geben die Wahrscheinlichkeit eines dieser ( 40 22 ) Pfade an. Da ja in jedem Pfad 22 Treffer und 18 Nicht-Treffer vorkommen und man die Einzelwahrscheinlichkeiten miteinander multiplizieren muss, ist die Wahrscheinlichkeit eines dieser Pfade:
0.3220.718

Somit muss d = 0.7, sowie c = 22 und e = 18 sein.

Bernoulli-Formel vervollständigen

Beispiel:

Ein Basketballspieler mit einer Trefferquote von p=0,4 wirft 15 mal auf den Korb.

Für welches der aufgeführten Ereignisse könnte der Term P = 0.415 + ( 15 a ) 0.414 bc die Wahrscheinlichkeit angeben?

Bestimme für diesen Fall die fehlenden Parameter a, b und c, so dass die Formel auch tatsächlich korrekt ist.

Lösung einblenden

Es machen zwei Zufallsgrößen Sinn:
X : Anzahl der Treffer (also es trifft er in den Korb)
Y : Anzahl der Nicht-Treffer (also es trifft er nicht in den Korb)

Beim ersten Summand 0.415 steht ja die gegebene Wahrscheinlichkeit in der Basis und die Gesamtanzahl n=15 in der Hochzahl. Dieser Teilterm gibt also die Wahrscheinlichkeit für 15 Treffer bzw. 0 Nicht-Treffer an, also P(X=15) bzw. P(Y=0).

Beim zweiten längeren Term erkennt man die Potenz 0.414, bei dem die gegebene Wahrscheinlichkeit in der Basis steht. Weil 14 in der Hochzahl steht, muss das also die Wahrscheinlichkeit für 14 Treffer sein, also P(X=14) bzw. P(Y=1).

X: Treffer:
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Y: keine Treffer:
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0

Zusammengefasst ergibt sich also die Wahrscheinlichkeit P(X=15)+P(X=14)=P(X≥14) bzw. P(Y≤1)

Somit ist die gesuchte Option: Mindestens 14 mal trifft er in den Korb.

Weil ja in der Basis der ersten Potenz (im hinteren Bernoulliformel-Term) die gegebene Wahrscheinlichkeit steht, muss in der Basis der zweiten Potenz die Gegenwahrscheinlichkeit stehen. Somit ist b = 0.6.

Die Hochzahl der ersten Potenz (im hinteren Bernoulliformel-Term) gibt die Anzahl der "Treffer" an, somit kann man bei 15 Versuchen die Anzahl der "Nicht-Treffer" mit c = 1 bestimmen.

Die Anzahl der richtigen Pfade (mit 14 Treffer und 1 Nicht-Treffer) steht vorne im Binomialkoeffizient mit ( 15 14 ) , also ist a = 14 (hier ist auch a=1 möglich).

Binomial-Aufgabe mit 2 Ereignissen

Beispiel:

In einer Chip-Fabrik werden neue High Tech Chips produziert. Leider ist die Technik noch nicht so ganz ausgereift, weswegen Ausschuss mit einer Wahrscheinlichkeit von p=0,16 entsteht. Es wird eine Stichprobe der Menge 70 entnommen. Wie groß ist die Wahrscheinlichkeit, dass von den ersten 10 Stück dieser Stichprobe gleich mal genau 2 defekt sind und von den restlichen der Stickprobe höchstens 10 nicht funktionieren.

Lösung einblenden

Wir können die beiden Ereignisse als zwei getrennte von einander unabhängige Zufallsversuche betrachten, dabei betrachten wir zuerst die ersten 10 Durchgänge:

Die Zufallsgröße X gibt die Anzahl der defekten Chips an. X ist binomialverteilt mit n=10 und p=0.16.

Die gesuchte Wahrscheinlichkeit des ersten Teilereignisses berechnet man jetzt einfach als P0.1610 (X=2) ≈ 0.2856.

Analog betrachten wir nun die restlichen 60 Durchgänge:

Die Zufallsgröße Y gibt die Anzahl der defekten Chips an. Y ist binomialverteilt mit n=60 und p=0.16.

Die gesuchte Wahrscheinlichkeit des zweiten Teilereignisses berechnet man nun als P0.1660 (Y10) ≈ 0.6378.

Da die beiden Teilereignisse unabhängig voneinander sind und ja beide eintreten sollen, müssen wir nun die beiden Teilwahrscheinlichkeiten miteinander multiplizieren um die gesuchte Gesamtwahrscheinlcihkeit zu erhalten:

P = P0.1610 (X=2) P0.1660 (Y10) = 0.2856 ⋅ 0.6378 ≈ 0.1822

zwei unabhängige Binom.

Beispiel:

Ein Biathlet hat beim Liegendschießen eine Trefferquote von 94% und im Stehen 81%. Beim Sprintwettbewerb muss er 5 mal liegend und 5 mal im Stehen schießen. Wie hoch ist die Wahrscheinlichkeit, dass er dabei mindestens 9 mal trifft?
(Bitte auf 4 Stellen nach dem Komma runden)

Lösung einblenden

Zuerst überlegen wir mit welchen Kombinationen man auf die Summe von mindestens 9 kommen kann:

  • 4 mal Liegendschießen und 5 mal Stehendschießen
  • 5 mal Liegendschießen und 4 mal Stehendschießen
  • 5 mal Liegendschießen und 5 mal Stehendschießen

4 mal Liegendschießen und 5 mal Stehendschießen

Die Wahrscheinlichkeit für 4 mal Liegendschießen ist

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=5 und p=0.94.

P0.945 (X=4) = ( 5 4 ) 0.944 0.061 ≈ 0.2342
Die Wahrscheinlichkeit für 5 mal Stehendschießen ist

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=5 und p=0.81.

P0.815 (X=5) = ( 5 5 ) 0.815 0.190 ≈ 0.3487
Da die beiden Ereignisse unabhängig voneinander sind, darf man die Wahrscheinlichkeiten multilplizieren, um die Wahrscheinlichkeit, dass beides eintritt, zu erhalten.
p1=0.2342 ⋅ 0.3487 = 0.08166554

5 mal Liegendschießen und 4 mal Stehendschießen

Die Wahrscheinlichkeit für 5 mal Liegendschießen ist

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=5 und p=0.94.

P0.945 (X=5) = ( 5 5 ) 0.945 0.060 ≈ 0.7339
Die Wahrscheinlichkeit für 4 mal Stehendschießen ist

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=5 und p=0.81.

P0.815 (X=4) = ( 5 4 ) 0.814 0.191 ≈ 0.4089
Da die beiden Ereignisse unabhängig voneinander sind, darf man die Wahrscheinlichkeiten multilplizieren, um die Wahrscheinlichkeit, dass beides eintritt, zu erhalten.
p2=0.7339 ⋅ 0.4089 = 0.30009171

5 mal Liegendschießen und 5 mal Stehendschießen

Die Wahrscheinlichkeit für 5 mal Liegendschießen ist

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=5 und p=0.94.

P0.945 (X=5) = ( 5 5 ) 0.945 0.060 ≈ 0.7339
Die Wahrscheinlichkeit für 5 mal Stehendschießen ist

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=5 und p=0.81.

P0.815 (X=5) = ( 5 5 ) 0.815 0.190 ≈ 0.3487
Da die beiden Ereignisse unabhängig voneinander sind, darf man die Wahrscheinlichkeiten multilplizieren, um die Wahrscheinlichkeit, dass beides eintritt, zu erhalten.
p3=0.7339 ⋅ 0.3487 = 0.25591093


Die gesuchte Wahrscheinlichkeit erhält man nun, indem man die Wahrscheinlichkeiten der 3 Kombinationen addiert:

0.0817 + 0.3001 + 0.2559 = 0.6377

Kombination Binom.-Baumdiagramm

Beispiel:

Bei einer Fluggesellschaft treten 14% der Besitzer gültiger Flugtickets ihren Flug nicht an. Deswegen verkauft die Fluggesellschaft immer 107 Tickets für ihr Flugzeug mit 95 Plätzen. Wie groß ist die Wahrscheinlichkeit, dass es bei drei aufeinanderfolgenden Flügen nicht öfters als einmal zu der peinlichen Situation kommt, dass mehr Fluggäste ihren Flug antreten wollen, als Plätze frei sind?
(Bitte auf 4 Stellen nach dem Komma runden)

Lösung einblenden

Zuerst berechnen wir mit Hilfe der Binomialverteilungsfunktionen die Einzelwahrscheinlichkeiten für 'nicht überbucht'.

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=107 und unbekanntem Parameter p.

Gesucht ist die Wahrscheinlichkeit für höchstens 95 Treffer bei 107 Versuchen mit einer Einzelwahrscheinlichkeiten von 0.86, also P0.86107 (X95)

Dazu kann man ja einfach die kumulierte Binomialverteilungsfunktion benutzen:

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=107 und p=0.86.

P0.86107 (X95) = P0.86107 (X=0) + P0.86107 (X=1) + P0.86107 (X=2) +... + P0.86107 (X=95) = 0.83368814460951 ≈ 0.8337
(TI-Befehl: binomcdf(107,0.86,95))

Damit kennen wir nun die Einzelwahrscheinlichkeiten von 'nicht überbucht' (p=0.8337) und 'überbucht'(p=0.1663).

Jetzt können wir mit einem Baumdiagramm die Gesuchte Endwahrscheinlichkeit berechnen.

Gesucht ist ja 0 mal 'überbucht' oder 1 mal 'überbucht'

EreignisP
nicht überbucht -> nicht überbucht -> nicht überbucht0,5795
nicht überbucht -> nicht überbucht -> überbucht0,1156
nicht überbucht -> überbucht -> nicht überbucht0,1156
nicht überbucht -> überbucht -> überbucht0,0231
überbucht -> nicht überbucht -> nicht überbucht0,1156
überbucht -> nicht überbucht -> überbucht0,0231
überbucht -> überbucht -> nicht überbucht0,0231
überbucht -> überbucht -> überbucht0,0046

Einzel-Wahrscheinlichkeiten: nicht überbucht: 0,8337; überbucht: 0,1663;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'nicht überbucht'-'nicht überbucht'-'nicht überbucht' (P=0,5795)
  • 'nicht überbucht'-'nicht überbucht'-'überbucht' (P=0,1156)
  • 'nicht überbucht'-'überbucht'-'nicht überbucht' (P=0,1156)
  • 'überbucht'-'nicht überbucht'-'nicht überbucht' (P=0,1156)

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

0,5795 + 0,1156 + 0,1156 + 0,1156 = 0,9262


feste Reihenfolge im Binomialkontext

Beispiel:

In einer Urne sind 7 blaue und 3 rote Kugeln. Es wird 5 mal eine Kugel gezogen. Nach jedem Ziehen wird die Kugel wieder zurückgelegt. Bestimme die Wahrscheinlichkeit, dass dabei genau 4 blaue Kugeln gezogen werden und diese aber unmittelbar hintereinander gezogen werden (also ohne, dass dazwischen mal eine rote gezogen wird).

Lösung einblenden

Wenn die Reihenfolge keine Rolle spielen würde, könnten wir ja einfach die Wahrscheinlichkeit von 4 Treffer bei 5 Versuchen mit der Formel von Bernoulli berechnen: ( 5 4 ) 0.7 4 0.3 1

Dabei gibt ja 0.7 4 0.3 1 die Wahrscheinlichkeit eines bestimmten Pfads mit 4 Treffer und 1 Nicht-Treffern und ( 5 4 ) die Anzahl solcher Pfade an.

Hier spielt nun aber die Reihenfolge eine Rolle, also haben wir nicht alle möglichen ( 5 4 ) Anordnungen der Treffer sondern nur die ausgewählten (bei denen die Treffer benachbart sind), das sind im Einzelnen:

XXXXO

OXXXX

Es gibt also genau 2 verschiedene mögliche Reihenfolgen für diese benachbarten Treffer, somit gilt für die Gesamtwahrscheinlichkeit:
P = 2 ⋅ 0.7 4 0.3 1 ≈ 0.1441