nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Binomialvert. mit variablem n (mind)

Beispiel:

In einer Urne ist der Anteil der grünen Kugeln 40%. Wie oft muss mindestens gezogen werden ( - natürlich mit Zurücklegen - ), so dass mit mind. 50% Wahrscheinlichkeit 33 oder mehr grüne Kugeln gezogen werden?

Lösung einblenden
nP(X≤k)
......
810.5121
820.4761
830.4406
......

Die Zufallsgröße X gibt Anzahl der gezogenen grünen Kugeln an und ist im Idealfall binomialverteilt mit p = 0.4 und variablem n.

Es muss gelten: P0.4n (X33) ≥ 0.5

Weil man ja aber P0.4n (X33) nicht in den WTR eingeben kann, müssen wir diese Wahrscheinlichkeit über die Gegenwahrscheinlichkeit berechnen:

P0.4n (X33) = 1 - P0.4n (X32) ≥ 0.5 |+ P0.4n (X32) - 0.5

0.5 ≥ P0.4n (X32) oder P0.4n (X32) ≤ 0.5

Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:

Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 40% der Versuche mit einem Treffer. Also müssten dann doch bei 33 0.4 ≈ 83 Versuchen auch ungefähr 33 (≈0.4⋅83) Treffer auftreten.

Wir berechnen also mit unserem ersten n=83:
P0.4n (X32) ≈ 0.4406 (TI-Befehl: Binomialcdf ...)

Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.5 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.

Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.5 überschritten wird.

Aus der Werte-Tabelle (siehe links) erkennt man dann, dass erstmals bei n=82 die gesuchte Wahrscheinlichkeit unter 0.5 ist.

n muss also mindestens 82 sein, damit P0.4n (X32) ≤ 0.5 oder eben P0.4n (X33) ≥ 0.5 gilt.

Binomialvert. mit variablem n (mind)

Beispiel:

In einer Urne ist der Anteil der grünen Kugeln 80%. Wie oft muss mindestens gezogen werden ( - natürlich mit Zurücklegen - ), so dass mit mind. 50% Wahrscheinlichkeit 32 oder mehr grüne Kugeln gezogen werden?

Lösung einblenden
nP(X≤k)
......
390.5317
400.4069
......

Die Zufallsgröße X gibt Anzahl der gezogenen grünen Kugeln an und ist im Idealfall binomialverteilt mit p = 0.8 und variablem n.

Es muss gelten: P0.8n (X32) ≥ 0.5

Weil man ja aber P0.8n (X32) nicht in den WTR eingeben kann, müssen wir diese Wahrscheinlichkeit über die Gegenwahrscheinlichkeit berechnen:

P0.8n (X32) = 1 - P0.8n (X31) ≥ 0.5 |+ P0.8n (X31) - 0.5

0.5 ≥ P0.8n (X31) oder P0.8n (X31) ≤ 0.5

Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:

Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 80% der Versuche mit einem Treffer. Also müssten dann doch bei 32 0.8 ≈ 40 Versuchen auch ungefähr 32 (≈0.8⋅40) Treffer auftreten.

Wir berechnen also mit unserem ersten n=40:
P0.8n (X31) ≈ 0.4069 (TI-Befehl: Binomialcdf ...)

Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.5 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.

Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.5 überschritten wird.

Aus der Werte-Tabelle (siehe links) erkennt man dann, dass erstmals bei n=40 die gesuchte Wahrscheinlichkeit unter 0.5 ist.

n muss also mindestens 40 sein, damit P0.8n (X31) ≤ 0.5 oder eben P0.8n (X32) ≥ 0.5 gilt.

Binomialvert. mit variablem n (höchst.)

Beispiel:

Eine Fluggesellschaft geht davon aus, dass 12% der gekauften Tickets gar nicht eingelöst werden. Wieviel Tickets kann sie für ihre 37-Platzmaschine höchstens verkaufen, so dass es zu mindestens 50% Wahrscheinlichkeit zu keiner Überbelegung kommt.

Lösung einblenden
nP(X≤k)
......
420.5781
430.4137
......

Die Zufallsgröße X gibt die Anzahl der Ticketbesitzer, die tatsächlich fliegen an und ist im Idealfall binomialverteilt mit p = 0.88 und variablem n.

Es muss gelten: P0.88n (X37) ≥ 0.5

Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:

Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 88% der Versuche mit einem Treffer. Also müssten dann doch bei 37 0.88 ≈ 42 Versuchen auch ungefähr 37 (≈0.88⋅42) Treffer auftreten.

Wir berechnen also mit unserem ersten n=42:
P0.88n (X37) ≈ 0.5781 (TI-Befehl: Binomialcdf ...)

Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.5 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.

Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.5 überschritten wird.

Aus der Werte-Tabelle (siehe links) erkennt man dann, dass letztmals bei n=42 die gesuchte Wahrscheinlichkeit über 50% ist.

Binomialvert. mit variablem p (diskret) für WTR

Beispiel:

Die Homepage-AG einer Schule möchte auf der Startseite der Internetseite der Schule ein Zufallsbild integrieren. Dabei soll bei jedem Aufruf der Startseite ein zufälliges Bild aus einer Bilderdatenbank gezeigt werden. Alle Bilder der Datenbank sind immer gleich wahrscheinlich. Auf 3 Bildern der Datenbank sind Mitglieder der Homepage-AG zu sehen. Es wird geschätzt, dass die Seite täglich 120 mal aufgerufen wird. Die Mitglieder der Homepage-AG wollen dass mit mindestens 85%-iger Wahrscheinlichkiet mindestens 10 mal am Tag eines ihrer eigenen 3 Bilder erscheint. Wie viele andere Bilder dürfen dann höchstens noch in der Datenbank sein?

Lösung einblenden
pP(X≥10)=1-P(X≤9)
......
3 16 0.9996
3 17 0.9988
3 18 0.9973
3 19 0.9945
3 20 0.9898
3 21 0.9828
3 22 0.9728
3 23 0.9594
3 24 0.9424
3 25 0.9218
3 26 0.8975
3 27 0.87
3 28 0.8394
......

Die Zufallsgröße X gibt die Anzahl der Bilder mit Homepage-AG-lern an. X ist binomialverteilt mit n=120 und unbekanntem Parameter p.

Es muss gelten: Pp120 (X10) = 1- Pp120 (X9) = 0.85 (oder mehr)

Wir wissen, dass der Zähler bei unserer Einzelwahrscheinlichkeit p 3 sein muss, da es ja genau 3 günstige Fälle gibt.

Wir müssen nun bei verschiedenen Nennern untersuchen, wie hoch die gesuchte Wahrscheinlichkeit Pp120 (X10) ('mindestens 10 Treffer bei 120 Versuchen') bei diesen Nennern wird (siehe Tabelle links)

Als Startwert wählen wir als p= 3 16 . (Durch Ausprobieren erkennt man, dass vorher die Wahrscheinlichkeit immer fast 1 ist)

In dieser Tabelle erkennen wir, dass letztmals bei der Einzelwahrscheinlichkeit p= 3 27 die gesuchte Wahrscheinlichkeit über 85% bleibt.
Der Nenner, also die Anzahl aller Bilder in der Datenbank, darf also höchstens 27 sein.

Also wären noch 24 zusätzliche Optionen (also weitere Bilder) zulässig.

Binomialvert. mit variablem k (höchst.)

Beispiel:

Bei einem Zufallsexperiment beträgt die Wahrscheinlichkeit für einen Treffer p=0,3. Das Zufallsexperiment soll 87 mal wiederholt werden. Dabei soll die Wahrscheinlichkeit, dass von den 87 Versuchen höchstens k Treffer sind, weniger als 70% betragen. Bestimme den größtmöglichen Wert für k.

Lösung einblenden
kP(X≤k)
......
220.2011
230.2749
240.3593
250.4503
260.5434
270.6335
280.7163
290.7885
300.8482
310.8954
......

Die Zufallsgröße X gibt Anzahl der Treffer an und ist im Idealfall binomialverteilt mit p = 0.3 und n = 87.

Es muss gelten: P0.387 (Xk) < 0.7

Jetzt müssen wir eben so lange mit verschiedenen Werten von k probieren, bis diese Gleichung erstmals nicht mehr erfüllt wird:

Dabei kann man entweder einfach viele verschiedene Werte einzeln berechnen oder man verwendet Listen bei der Binomialverteilung im WTR, (TI: binomcdf, Casio: Kumul. Binomial-V).

Schaut man dazu die kumulierte Binomialverteilung in der Tabelle links an, so erkennt man, dass die Trefferzahlen im Intervall zwischen 0 und 27 immer noch weniger als 0.7 der Gesamt-Wahrscheinlichkeit auf sich vereinen. Erst P0.387 (X28) nimmt mit 71.63% einen Wert über 0.7 an.

Das größtmögliche k mit P0.387 (Xk) < 0.7 ist somit k = 27.

größtmöglicher Wert für k muss somit k = 27 sein.

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
Die Höhen der Säulen entsprechen der Wahrscheinlichkeit für genau X=k Treffer
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)

Binomialvert. mit variablem k (mind.)

Beispiel:

Bei einem Multiple-Choice-Test werden 25 Fragen gestellt. Bei jeder Frage gibt es 4 Antworten, von denen genau eine richtig ist. Die Wahrscheinlichkeit, dass man mit reinem Raten der richtigen Antworten durch Zufall trotzdem den Test besteht, soll unter 6% liegen. Wie viele Fragen müssen dann zum Bestehen des Tests mindestens richtig beantwortet werden?

Lösung einblenden
kP(X≤k)
......
50.3783
60.5611
70.7265
80.8506
90.9287
100.9703
110.9893
120.9966
130.9991
140.9998
......

Die Zufallsgröße X gibt die Anzahl der richtig geratenen Fragen an und ist im Idealfall binomialverteilt mit p = 1 4 und n = 25.

Es muss gelten: P 1 4 25 (Xk) < 0.06 (oranger Bereich)

oder andersrum ausgedrückt: P 1 4 25 (Xk-1) ≥ 0.94 (blauer Bereich)

Jetzt müssen wir eben so lange mit verschiedenen Werten von k probieren, bis diese Gleichung erstmals erfüllt wird:

Dabei kann man entweder einfach viele verschiedene Werte einzeln berechnen oder man verwendet Listen bei der Binomialverteilung im WTR, (TI: binomcdf, Casio: Kumul. Binomial-V).

Schaut man dazu die kumulierte Binomialverteilung in der Tabelle links an, so erkennt man, dass die Trefferzahlen im Intervall zwischen 0 und 9 immer noch weniger als 0.94 der Gesamt-Wahrscheinlichkeit auf sich vereinen. Erst P 1 4 25 (X10) nimmt mit 97.03% einen Wert über 0.94 an.

Das kleinstmögliche k mit P 1 4 25 (Xk) = 1 - P 1 4 25 (Xk-1) < 0.06 ist somit k = 11.

Die Mindestanzahl richtiger Fragen zum Bestehen des Tests muss somit k = 11 sein.

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
Die Höhen der Säulen entsprechen der Wahrscheinlichkeit für genau X=k Treffer
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)

Binomialvert. mit variablem k (höchst.)

Beispiel:

Mitarbeiter:innen einer Firma müssen eine Maschine bedienen, die mit einer Wahrscheinlichkeit von 13% ein fehlerhaftes Teil produziert. Jede Mitarbeiter:in produziert jeden Monat 85 Teile. Als Gag möchte die Geschäftsführung den Mitarbeiter:innen einen kleines Geschenk machen, deren Maschnine nicht mehr als eine bestimmte Anzahl an fehlerhaften Teilen produziert hat. Dabei soll aber die Wahrscheinlichkeit, ein Geschenk zu bekommen, bei höchstens 10% liegen. Wie viele fehlerhaften Teile dürfen somit höchstens produziert werden, um ein Geschenk zu bekommen?

Lösung einblenden
kP(X≤k)
......
10.0001
20.0007
30.0031
40.0104
50.028
60.0632
70.1226
80.2091
90.3196
100.4452
......

Die Zufallsgröße X gibt die Anzahl der fehlerhaften Teile an und ist im Idealfall binomialverteilt mit p = 0.13 und n = 85.

Es muss gelten: P0.1385 (Xk) < 0.1

Jetzt müssen wir eben so lange mit verschiedenen Werten von k probieren, bis diese Gleichung erstmals nicht mehr erfüllt wird:

Dabei kann man entweder einfach viele verschiedene Werte einzeln berechnen oder man verwendet Listen bei der Binomialverteilung im WTR, (TI: binomcdf, Casio: Kumul. Binomial-V).

Schaut man dazu die kumulierte Binomialverteilung in der Tabelle links an, so erkennt man, dass die Trefferzahlen im Intervall zwischen 0 und 6 immer noch weniger als 0.1 der Gesamt-Wahrscheinlichkeit auf sich vereinen. Erst P0.1385 (X7) nimmt mit 12.26% einen Wert über 0.1 an.

Das größtmögliche k mit P0.1385 (Xk) < 0.1 ist somit k = 6.

Die Maximalanzahl der fehlerhaften Teile für ein Geschenk muss somit k = 6 sein.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
Die Höhen der Säulen entsprechen der Wahrscheinlichkeit für genau X=k Treffer
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)